Mapping Impact of Urbanization in the Continental U.S. from 2001-2020

LahouariBounoua, Biospheric Sciences, NASA GSFC, Joseph Nigro, Biospheric Sciences, NASA GSFC and SSAI, Ping Zhang, Biospheric
Sciences, NASA GSFC and University of Maryland Kurtis Thome, Biospheric Sciences, NASA GSFC
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Data fusion, from Landsat and MODIS, was used to characterize US buildup and to derive a plausible 2020
impervious surface area (ISA) projection based on observed rates of ISA change as a function of population from
2006 to 2011. The analysis shows that urbanization in the U.S. implicitly includes a ‘cultural character whereby
depending on the region, cities are either built horizontally with large ISA per capita or vertically with a minimal spatial
footprint. This ‘cultural character can also be forced by land availability, topography and inland water. In other regions,
cities seem to have adapted to their population growth and adjusted their ISA use per capita.

s Earth Sciences Division — Hydrospheric and Biospheric Sciences




Name: Lahouari Bounoua, Biospheric Sciences, NASA GSFC
E-mail: Lahouari.Bounoua@nasa.gov
Phone: 301-614-6631

References:
Bounoua L., Nigro J., P. Zhang, K. Thome: Mapping Impact of Urbanization in the Continental U.S. from 2001-2020, in preparation.

Data Sources: Landsat-based National Land Cover Dataset to characterize the impervious surface area (urban) and MODIS 500m-land cover classification along with the
CIESIN Gridded Population of the World and the U.S. Census Bureau 2020 National Population Projection. The 1:500k USA Urban Area boundaries (Esri, Department of
Commerce, Census Bureau, Geography Division) were used to calculate population and ISA statistics within each urban area.

Technical Description of Figures:

Maps: a) 2001-2020 population change in persons for the southwestern region of the U.S; b) 2001-2020 ISA change (% of urban area as demarcated by the 1:500k USA Urban
Area boundaries) for the southwestern region of the U.S. The major urban areas included in a) and b) are Las Vegas, Los Angeles, Phoenix, Salt Lake City, San Diego, and San
Francisco; ¢) 2001-2020 population change in persons for the northeastern region of the U.S; d) 2001-2020 ISA change (% of urban area as demarcated by the 1:500k USA
Urban Area boundaries) for the northeastern region of the U.S. The major urban areas included in ¢) and d) are Baltimore, Boston, Hartford, New York City, Philadelphia, and
Washington D.C. The table below lists 2001-2020 population and ISA change for these select urban areas.

Urban Area Population (persons) |ISA (%) Urban Area Population (persons) |ISA (% )
Baltimore, MD 291,110 10.94 Las Vegas-Henderson, NV 230,182 4476
Boston, MA--NH--RI 391,812 14.29 | Los Angeles-Long Beach-Anaheim, CA 3,552,181 9.55
Hartford, CT 90,467 13.16 Phoenix-Mesa, AZ 669,737 44.76
New York-Newark, NY-NJ-CT 1,712,144 12.14 Salt Lake City-West Valley City, UT 189,288 31.38
Philadelphia, PA--NJ--DE--MD 405,285 15.55 San Diego, CA 762,902 9.01
Washington, DC--VA--MD 622,948 14.05 San Francisco-Oakland, CA 839,030 3.40

Graphs: e) 2001-2020 population change vs. ISA change for select urban areas in the northeastern region of the U.S. Note that for New York City there is a projected increase in
population of ~2 million people while for Hartford the population increase is only ~90,000 people, yet the ISA change for both cities is about the same. This reflects the vertical
growth that is occurring in the New York City area where population use of per capita ISA is minimal compared to Hartford . f) 2001-2020 population change vs. ISA change for
select urban areas in the southwestern region of the U.S. Note that for Los Angeles ISA change is small despite the projected increase in population of ~3.5 million people. In
contrast, for Phoenix a smaller change in population triggers a greater increase in ISA. These examples reveal the horizontal vs. vertical building patterns and do represent

regional ‘cultures’ .

Scientific significance, societal relevance, and relationships to future missions:

Scientific significance: 1) Urbanization in the U.S. includes a ‘cultural character’” whereby depending on the region, cities are either built horizontally resulting a large spatial
footprint or vertically with a minimal spatial footprint despite the magnitude in population increase. 2) In some regions, cities seemto have adapted to their population growth and
adjusted their ISA use per capita.

Societal relevance: US cities are home to more than 50% of the population and this is where climate change will be felt the most.
Relationships to future missions: Defines the need for a high resolution global mapping of urban settings to assess their interaction with the global environment.
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Progress of Improving Terra MODIS LWIR Spectral Band Calibration

Jack Xiong, Biospheric Sciences, NASAGSFC, Truman Wilson, Biospheric Sciences, NASA GSFC and SSAI, and Jungiang Sun,
Biospheric Sciences, NASA GSFCand GST
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BT Removal of False Clouds from B29 — B31 Cloud Mask

Restoring Terra MODIS LWIR spectral band calibration and data quality using improved
crosstalk correction algorithm and coefficients derived from on-orbit lunar observations.
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Sun, J., X. Xiong, Y. Li, S. Madhavan, A.Wu, and B. N. Wenny, “Evaluation of Radiometric Improvements With Electronic
Crosstalk Correction for Terra MODIS Band 27,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, issue 10, pp.
6497 - 6507, Oct 2014

Xiong, X., Z. Wang, J. Sun, A. Angal, J. Fulbright,and J. Butler, "MODIS and VIIRS Iunarobservations and applications," Proc.
SPIE 8889, Sensors, Systems, and Next-Generation Satellites XVII, 88890V, 2013

Data Sources: All sensorcalibration raw data and the data used to generate the images and science productexamples are
from NASA GSFC Level 1 and Atmosphere Archive and Distribution System (LAADS). The calibration coefficients and crosstalk
correction coefficients are derived by the NASAMODIS Characterization Support Team (MCST).

Technical Description of Figures:

Graphic a): TerraMODIS LWIR spectral band crosstalk example for receiving band 30 and sending band from 27 to 30 (left).
lllustration of band 27 calibration gain drift correction (right). The calibration gains (before and after correction) are computed
using on-board blackbody observations.

Graphic b): Examples of de-striping and land feature removal in Terra MODIS band 27 (data granule:2015183.1005) and
removal of false clouds from B29 — B31 Cloud Mask (data granule:2015182.1345).

Scientific significance, societal relevance, and relationships to future missions: Terra MODIS has successfully operated
for more than 16 years since its launch in December 1999 and its data products have been widely used by the remote sensing
community and users worldwide for studies of many key environmental parameters ofthe earth’s system. Electronic crosstalkin
the LWIR PV bands (27-30)was initially identified pre-launch and itsimpacthas become more serveras mission continues to
operate beyond its design lifetime. Correction algorithms have been developed and improved by previous and currentMCST
membersto restore Terra MODIS LWIR spectral band calibration and data product quality. Implementation of crosstalk correction
will be made after vigorous science and impactanalyses. Approaches developed from MODIS crosstalk characterization and
removal have potential applications for future remote sensing sensors, such as JPSS VIIRS and GOES-R ABI.
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Dramatic Contrasts in Arctic vs Antarctic Sea lce Trends in 3-D Visualizations

and Compilations of Monthly Record Highs and Lows
Claire L. Parkinson, Cryospheric Sciences, NASA GSFC, and Nicolo E. DiGirolamo, Cryospheric Sciences, NASA GSFC and SSAI
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New visualizations dramatically display the decreases in Arctic sea ice coverage over the years 1979-
2015, apparent in each month of the year, with not a single record high in ice extents occurring in any
month since 1986, a time period with 75 monthly record lows. Results are less dramatic in the Antarctic,
but intriguingly in the opposite direction, with only 6 record lows since 1986 and 45 record highs.

Earth Sciences Division — Hydrospheric and Biospheric Sciences



Names: Claire Parkinson, Cryospheric Sciences, NASAGSFC, & Nick DiGirolamo, Cryospheric Sciences, SSAI
Email: Claire.L.Parkinson@nasa.gov
Phone:301-614-5715

Reference: Parkinson, C. L., and N. E. DiGirolamo, 2016: New visualizations highlight new information on the contrasting Arctic and
Antarctic sea-ice trends since the late 1970s, Remote Sensing of Environment, 183, 198-204, doi:10.1016/j.rse.2016.05.020.

Data Sources: Satellite passive-microwave data from the Scanning Multichannel Microwave Radiometer (SMMR) on NASA’s Nimbus 7
satellite and the Special Sensor Microwave Imager (SSMI) and SSMI Sounder (SSMIS) on satellites of the Defense Meteorological
Satellite Program (DMSP).

Technical Description of Figures:

Graphic 1, 3-D Visualizations: These visualizations show for both polar regions the sea-ice-extent rankings by year for each month
January—December over the 37-year period 1979-2015. For each month, the 37 years of data are ranked from rank 1 for the year with the
lowest sea ice extent for that month to rank 37 for the year with the highest sea ice extent for that month; the rankings are color-coded
from deep red for the lowest rank to deep blue for the highest rank. The results for the Arctic are particularly striking, with almost all the
blues (high sea ice extents) in the first half of the record and almost all the reds (low sea ice extents) in the later part of the record. The
Antarctic results are basically in the opposite direction, from low ranks predominantly in the early part of the record to high ranks more
frequent in the later part of the record, although the upward flow for the Antarctic is not nearly as systematic as the downward flow for the
Arctic.

Graphic 2, Record Highs and Lows: Using the satellite-derived rankings displayed in Graphic 1, the plots of Graphic 2 highlight for
each month January—December every instance of a new (at the time) monthly record high ice extent (blue dots) and every instance of a
new monthly record low ice extent (red dots).

Scientific Significance: Satellite data have revealed marked changes in Arctic and Antarctic sea ice extents since the late 1970s,
contributing important information about how Earth’s climate is changing. The changes in the Arctic have garnered scientific and media
attention because of impacts of decreasing Arctic sea ice coverage on the Arctic climate, the Arctic ecosystems, and such individual
species as the iconic polar bear. As a result, much attention has been given to each new overall record low in Arctic ice extents, these
overall records typically occurring in September. This study systematically shows the record lows for all months, along with the record
highs for all months, and does so for the full 37-year SMMR/SSMI/SSMIS record. The results are striking, with the loss of ice in the Arctic
throughout the annual cycle so strong that there have been no monthly record high Arctic ice extents for any month of the year since 1986
but 75 monthly record lows. The Antarctic results also show a sharp contrast, although less sharp and in the opposite direction, with 6
monthly record low ice extents since 1986 and 45 monthly record highs.

Crddana

Earth Sciences Division — Hydrospheric and Biospheric Sciences



SMAP Faraday Rotation
David Le Vine, Cryospheric Sciences, NASA GSFC
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Faraday rotation is a change in the polarization as signal propagates
through the ionosphere. At L-band it is necessary to correct for this
change and measurements are made on the spacecraft of the rotation
= s angle. These figures show that there is good agreement between the
SMAP measurements (blue) and predictions based on models (red).
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Data Sources:
NASA's Soil Moisture Active Passive Mission
Aquarius Sea Surface Salinity Mission

Technical Description of Figures:
Figure 1: Graph showing the SMAP satellite in a descending orbit.

Figure 2: Graphical analysis of Faraday rotation angle retrieved from SMAP data (blue) and the theoretical prediction (red).
Aquarius demonstrated the algorithm for measuring the rotation angle in situ (i.e.at the spacecraft) over the ocean for
applications to the measurementof salinity [Le Vine, et al, 2013]and Aquarius data over land demonstrated some of the
problems associated with the algorithm overland (e.g. noise at positive latitude) [Le Vine et al, 2011].

Figure 3: The polarization rotation angle, Qg, is measured using the ratio of the third Stokes parameter, T3, and the second
Stokes parameter: Q= Tv —Th (Yueh, 2000):Qr= - 0.5 Atan [ T3/ (Tv—Th) ]

Scientific significance, societal relevance, and relationships to future missions:

Faraday rotation is an importantsource of error in remote sensing at L-band. Research is underway to verify that the technique
for measuring the rotation angle in situ using the ratio of the third and second Stokes parameter can be used by SMAP to make
corrections for application to remote sensing of soil moisture [Le Vine et al, 2016].
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Rainfall-triggered Landslides Bury Sri Lankan Villages GEST/%?R
Dalia Kirschbaum, Thomas Stanley, Hydrological Sciences, NASA GSFC, GESTAR \V..,
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On the afternoon of May 17th, 2016, a major
landslide event caused at least 92 deaths, with 109
still missing®. The site was rated highly susceptible
to landslides in a new global landslide susceptibility
map. GPM precipitation data suggest that both
antecedent and current rainfall as well as complex

topography played a role in the slope failures.
*BBC News (http://www.bbc.com/news/world-asia-36355980)
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+ Time series, IMERG data (pmm.nasa.gov). Visualization of time series: NASA GES DISC Giovanni. J. G. Ackerand G. Leptoukh, “Online Analysis
Enhances Use of NASA Earth Science Data”, Eos, Transactions American Geophysical Union,Vol. 88, No. 2 (9 January 2007), pages 14and 17.

* Map: Stanley, T., and Kirschbaum, D., A heuristic approachto global landslide susceptibility mapping., In preparationfor submission to Natural
Hazards.

* GlobalLandslide Catalog: Kirschbaum, D., T. Stanley, and Y. Zhou, 2015: Spatial and temporal analysis of a global landslide catalog. Geomorphology,
249, 4-15, doi:10.1016/j.geomorph.2015.03.016. http://linkinghub .elsevier.com/retrieve/pii/S0169555X15001579.

» Background: BBC (2016), SriLanka mudslides: Death tollreaches 92 with many still missing, BBC News. Available from:
http://www.bbc.com/news/world-asia-36355980 (Accessed 23 May 2016)

Data Sources:

* Rainfall: Integrated Multi-satellite Retrievals for GPM (IMERG)

» Elevation: Shuttle Radar Topography Mission, Advanced Spaceborne Thermal Emission and Reflection Radiometer, the Ice, Cloud, andland Elevation
Satellite, and the Radarsat Antarctic Mapping Project

» ForestLoss: Landsat

* Geological features: Geological Map of the World

* Roads: OpenStreetMap

» Historical landslides: NASA’s Global Landslide Catalog

Technical Description of Figures:
Figure 1: Rainfall rate time series from IMERG data with 0.1-degree spatial resolution and 0.5-hour temporal resolution. Green starindicates approximate
time of landslides.

Figure 2: Excerptfroma global map of landslide susceptibility with a 30-arcsecond spatial resolution. Blue indicates areas with very low susceptibility to
landslides, typically flat ground. Red indicates the presence of highly susceptible terrain. This map rates landslide susceptibility globally and might not be
optimal for any specific region such as Sri Lanka.

Scientific significance, societal relevance,and relationships to future missions:

The globallandslide susceptibility map is one component of a prototype landslide nowcasting system developed at GSFC. This system uses rainfall
estimates from GPM and other satellites to provide current situational awareness, which enables faster, more informed disasterresponses. The
susceptibility map may also be used as an aid to prioritizing future research projects such as theremote sensing of landslides by optical orradar
instruments.
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Calculating Remote Sensing Reflectance Uncertainties Using an Instrument Model
Propagated Through Atmospheric Correction via Monte Carlo Simulations

E. Karakoylu, Ocean Ecology, SAIC, andB. Franz, Ocean Ecology, NASA GSFC, Carlos Del Castillo, Ocean Ecology, NASA GSFC

First attempt at quantifying uncertainties in ocean remote sensing reflectance satellite
measurements. Based on 1000 iterations of Monte Carlo. Data source is a SeaWiFS
4-day composite, 2003. The uncertainty is for remote sensing reflectance (Rrs) at 443 nm.
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Data Sources: Remote sensing reflectance from SeaWiFS circa 2003. The same analysis can
be applied to other sensors if a good instrument model is available.

Technical Description of Figure:
Figure 1: Global distribution of uncertainties Rrs at 443 nm. Date are from 4 day composite
SeaWiFS collected in 2003.

Scientific significance, societal relevance, and relationships to future missions: This is
the first attempt at a quantifying total uncertainties in global ocean color data sets. These
uncertainties in Rrs will be propagated through the science algorithms to produce uncertainty
estimates for ocean color products. The methods developed here can be applied to past,
current, and future ocean color missions.
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Measurement of the Band-to-Band Registration of the SNPP VIIRS Imaging
System from On-Orbit Data

James C. Tilton, Terrestrial Information Systems, NASA GSFC, Guoging Lin, Terrestrial Information Systems,
NASA GSFC and SSAI, and Bin Tan, Terrestrial Information Systems, NASA GSFC and SSAI
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The on-orbit Band-to-Band measurements are generally in close agreement with pre-launch
Band-to-Band measurements performed in a laboratory
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Data Sources: VIIRS image from over the Mediterranean Sea collected on July 31, 2013.

Technical Description of Figures:

Left Graphic:Imagery Resolution 5-Min L1 Swath Radiance data (bands 14, I3 and 12 shown as red, green and blue, respectively, with histogram equalization
enhancement) for a VIIRS image from over the Mediterrancan Sea collected on July 31, 2013. (Note: Since this image was acquired from an ascending orbit, the
southeast corner is at the top-left corner as displayed.)

Right Graphics: Plots of pre-launch (lab) and on-orbit measured BBR shifts for all bands versus band I1. One standard deviation error bars are included with the on-
orbit measurements. (a) Along scan shifts in the 3x1 aggregation zone. (b) Along scan shifts in the 2x1 aggregation zone. (c) Along scan shifts in the no aggregation
zone.

Scientific significance,societal relevance, and relationships to future missions: This is the first study to measure the band-to-bandregistration with
on-orbit satellite data. The comparisonto in-lab pre-launch BBR measurements shows that this set of algorithm, which include normalized mutual
information and bicubic interpolation, produces accurate band-to-bandregistrationassessment . The result also indicates that the VIIRS sensoris in good
shape and performs as expected onband-to-bandregistration.
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